A Sensitive Electrochemical Sensor for Rapid Determination of Mebeverine Hydrochloride and Metronidazole Benzoate Selective Molecular Imprinted Polymer in the PVC Membrane

Main Article Content

Inas Hasan Mohammed Al Khafaji Yehya Kamal Khaleel Al-Bayati

Abstract

    By using precipitation polymerization, liquid electrodes of polymers imprinted with Mebeverine hydrochloride and metronidazole benzoate were created whereas the imprinted polymer (MIP) and non imprinted (NIP) polymers were prepared by using Mebeverine hydrochloride and Metronidazole benzoate qua a template. In the polymerization process, 2-Acrylamido-2-methyl-1-propane Sulphonic acid (AMPS) or 1-Vinylimidazole (VIZ) was used qua monomer, pentaerythritol triacrylate (PETRA) or Divinylbanzene (DVB) was used qua a cross-linker while benzoyl peroxide (BPO) was used as an initiator. The MIP membranes and the membranes of NIP were created by using Dibutyl Sebacate (DBS) and Tris(2-ethylhexyl)phosphate(TEHP) qua plasticizers in PVC matrix. The response time of the liquid electrodes was 1min. whereas their slopes and detection limits reached to 19.62 – 57.36 mV per decade and 1.2 x 10-6 – 2.0 x 10-5 M, respectively. Filling with standard solution of drug (0.1M), the liquid electrodes response -with suitable No.( selectivity for numerous of species - was suitable No.( since pH reached to 1.5 – 12. The developed electrodes were successfully applied for the analyte determination in preparation pharmaceutical sample without any time consuming pretreatment steps.

Article Details

How to Cite
AL KHAFAJI, Inas Hasan Mohammed; AL-BAYATI, Yehya Kamal Khaleel. A Sensitive Electrochemical Sensor for Rapid Determination of Mebeverine Hydrochloride and Metronidazole Benzoate Selective Molecular Imprinted Polymer in the PVC Membrane. Ibn AL- Haitham Journal For Pure and Applied Science, [S.l.], v. 31, n. 1, p. 75-87, may 2018. ISSN 2521-3407. Available at: <http://jihcoed.com/ihj/index.php/j/article/view/1855>. Date accessed: 24 june 2018. doi: http://dx.doi.org/10.30526/31.1.1855.
Section
Chemistry