Purely Goldie Extending Modules

Saad A. Al-Saadi
Ikbal A. Omer
Dep. of Mathematics /College of Science/University of Al Mustansiriyah
Received in: 4 March 2015, Accepted in : 13 April 2015

Abstract

An R-module M is extending if every submodule of M is essential in a direct summand of M. Following Clark, an R-module M is purely extending if every submodule of M is essential in a pure submodule of M. It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an R-module M is Goldie extending if, for each submodule X of M, there is a direct summand D of M such that $X \beta D$.

In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and G-extending modules. We call an R-module M is purely Goldie extending if, for each $X \subseteq M$, there is a pure submodule P of M such that $X \beta P$. Many characterizations and properties of purely Goldie extending modules are given. Also, we discuss when a direct sum of purely Goldie extending modules is purely Goldie extending and moreover we give a sufficient condition to make this property of purely Goldie extending modules is valid.

Key words: extending module, purely extending module, G-extending module, purely Goldie extending.
Introduction

Throughout all rings are associative and R denotes a ring with identity and all modules are unitary R-modules. A submodule X of a module M is called essential if every non-zero submodule of M intersects X nontrivially (notionally, $X \leq^e M$). Also, a submodule X of M is closed in M, if it has no proper essential extension in $M[1]$.

Recall that a module M is extending if every submodule of M is essential in a direct summand of M. Equivalently, every closed submodule of M is a direct summand [1]. Many generalizations of extending modules are extensively studied. Following Fuchs [2] and Clark [3], an R-module M is purely extending if every submodule of M is essentially a pure submodule of M (recall that a submodule N of an R-module M is pure if $IM \cap N = IN$ for every finitely generated ideal I of R). Also in [4], the following relations on the set of submodules of an R-module M are considered. (1) $X \alpha Y$ if and only if there exists a submodule A of M such that $X \leq^e A$ and $Y \leq A$; (ii) $X \beta Y$ if and only if $X \cap Y \leq^e X$ and $X \cap Y \leq Y$. Following [4], α is reflexive and symmetric, but it may not be transitive. Also, β is an equivalence relation. Moreover, an R-module M is extending if and only if for each submodule X of M, there exists a direct summand D of M such that $X \alpha D$. In 2009 Birkenmeier and Tercan [4], an R-module M is called Goldie extending (shortly, G-extending) if, for each X submodule of M, there is a direct summand D of M such that $X \beta D$.

In section one, we introduce purely G-extending modules. An R-module M is G-extending if, for each $X \leq M$, there is a pure submodule P of M such that $X \beta P$. It is clear that every G-extending (purely extending) module is purely G-extending module and the converse is not true in general. Additional conditions are given to make the converse true. In fact we prove that: let M be a pure split. Then M is a purely G-extending module if and only if M is a G-extending module. Moreover, the hereditary property of purely G-extending modules is discussed. We call an R-module M is purely G^+-extending if every direct summand of M is purely G-extending. We do not know whether every purely G-extending module is purely G^+-extending. Indeed, we conclude that every purely extending module is purely G^+-extending. Finally, we prove that an Z-module is extending if and only if M is a purely extending and M is a G-extending.

In section two, various characterizations of purely G-extending modules are given. For example, we prove that an R-module M is purely G-extending if and only if every direct summand A of the injective hull $E(M)$ of M, there exists a pure submodule P of M such that $(A \cap M) \beta P$. On other direction, the direct sum property of purely G-extending modules is discussed. We prove that, if M_i is purely G-extending module for each $i \in I$ and every closed submodule of $M=\bigoplus_{i \in I} M_i$ is fully invariant, then $M=\bigoplus_{i \in I} M_i$ is purely G-extending module.

1. Purely Goldie Extending Modules.

Recall that an R-module M is G-extending if, for each X submodule of M, there is a direct summand D of M such that $X \beta D$. Equivalently, M is Goldie extending if and only if for each closed submodule C of M, there is a direct summand D of M such that $C \beta D[4]$. Also, an R-module M is purely extending module if every submodule of M is essential in a pure submodule of M [3].

We introduce and study the class of modules which is a generalization of both G-extending modules and purely extending modules.
Definition (1.1)

An R-module M is called purely Goldie extending (shortly, purely G-extending) if, for each $X \leq M$, there is a pure submodule P of M such that $X \beta P$.

Remarks and Examples (1.2)

1) Every purely extending module is a purely G-extending, but the converse is not true in general. For example, the Z-module $M = Z_p \oplus Q$ is a purely G-extending since M is G-extending [4]. But by [4, Example (3.20)] and proposition (1.14), $M = Z_p \oplus Q$ is not purely extending Z-module.

2) Every G-extending module is purely G-extending, but the converse is not true in general. For example, by [5, Example (3.4)], the Z-module $M = \bigoplus_{i \in I} Z$ is purely extending but it is not extending. So M is a purely G-extending while, by proposition (1.14), M is not G-extending.

3) Every uniform module is purely G-extending, but the converse is not true in general. For example, Z_6 as Z-module is purely G-extending but it is not uniform.

Recall that an R-module M is a pure-split if every pure submodule of M is a direct summand [6]. The following proposition gives conditions under which the concepts of G-extending modules and purely G-extending modules are equivalent.

Proposition (1.3):

Let M be a pure-split R-module. Then M is a purely G-extending if and only if M is a G-extending.

Following [7], a non-zero R-module M is pure-simple if the only pure submodules of M are 0 and M itself.

Proposition (1.4):

Let M be a pure-simple R-module. Then M is a purely G-extending if and only if M is a uniform module.

Proof: (\Rightarrow) Let X be a submodule of M. By assumption, there is a pure submodule P of M such that $X \beta P$. So, $X \cap P$ is essential in P. But M is a pure-simple then $P = M$, then X is essential in M. Thus, M is a uniform module.

(\Leftarrow) Let X be a submodule of M. Since M is a uniform module, then X is essential in M, but M is a pure submodule of M, then $X \beta M$. Hence, M is a purely G-extending.

Corollary (1.5):

Let M be a pure-simple R-module. Then the following statements are equivalent.

1) M is a purely extending module.

2) M is a purely G-extending module.

3) M is uniform module.

Following [4], a submodule of G-extending module need not to be G-extending. Moreover, a submodule of purely extending module need not to be purely extending [5]. In fact, we do not know whether a submodule of a purely G-extending module is purely G-extending. Indeed, we have the following result.

Proposition (1.6):

Every submodule N of a purely G-extending R-module M with the property that the intersection of N with any pure submodule of M is a pure submodule of N is purely G-extending.
Proof: Let A be a submodule of N. Since M is a purely G-extending, then there is a pure submodule P of M such that $A \beta P$. By assumption, $P \cap N$ is a pure submodule of N. But, $(A \cap P) \leq P$ and $(A \cap P) \leq A$, so $(A \cap (P \cap N)) \leq (P \cap N)$ and $(A \cap (P \cap N)) \leq (A \cap N) = A$. Therefore, $A \beta (P \cap N)$. Thus, N is purely G-extending module.

From [4], recall that M is G^+-extending module if every direct summand of M is G-extending. This lead us to introduce the following.

Definition (1.7):
An R-module M is called purely G^+-extending if every direct summand of M is purely G-extending.

In fact, we do not know whether, every purely G-extending module is purely G^+-extending. In fact, we have the following result.

Proposition (1.8):
Every purely extending module is purely G^+-extending module.

Proof: Let N be a direct summand of a purely extending module M. By [5], N is purely extending module. Hence N is purely G-extending module. Thus, M is a purely G^+-extending.

But the converse of proposition (1.8) is not true in general, for example, the Z-module $M = Z_p \oplus Q$ (for any prime number p) is not purely extending by (1.2), but M is purely G^+-extending, since the only direct summands of M, $(Z_p \oplus 0), (0 \oplus Q)$, $(0 \oplus 0)$ and M, which are purely G-extending.

Recall that an R-module M has the pure intersection property (PIP) if the intersection of any two pure submodule of M is pure [8].

Proposition (1.9):
Let M be a purely G-extending and M has the PIP. Then M is a purely G^+-extending.

Proof: Let N be a direct summand of M and A be a submodule of N. Since M is a purely G-extending, then there is a pure submodule P of M such that $A \beta P$. But M satisfies PIP, then $P \cap N$ is a pure submodule of M. But $P \cap N \subseteq N$, hence $P \cap N$ is a pure submodule of N. Therefore, $A = (A \cap N) \beta (P \cap N)$ by [9], and so M is a purely G^+-extending.

Corollary (1.10):
Let M be a prime module over a Beizout domain. If M is a purely G-extending module, then M is a purely G^+-extending.

Recall that an R-module M is a multiplication if for each submodule A of M, there exists an ideal I of R such that $A = IM$ [10]. Since every multiplication module has the PIP [8]. Thus, we have the next corollary.

Corollary (1.11):
Let M be a multiplication purely G-extending module. Then M is a purely G^+-extending.

Corollary (1.12):
Let M is cyclic module over a commutative ring R. If M is a purely G-extending, then N is purely G-extending.

Corollary (1.13):
Let R be a purely G-extending commutative ring, then R is a purely G^+-extending.
The following result gives a characterization of extending abelian groups.

Proposition (1.4):
A \(Z \)-module \(M \) is extending module if and only if \(M \) is a purely extending and \(M \) is a \(G \)-extending as \(Z \)-module.

Proof: \((\Rightarrow)\) it is clear that.

\((\Leftarrow)\) Let \(N \) be a closed submodule of \(M \). Since \(M \) is a purely extending, then \(N \) is a pure submodule of \(M \) by [5]. Also, since \(M \) is a \(G \)-extending as \(Z \)-module by [4], then \(N \) is a direct summand of \(M \). Therefore, \(M \) is extending module. ■

2. Characterizations of Purely Goldie Extending Modules

It is known that \(M \) is a purely extending module if and only if every closed submodule in \(M \) is a pure in \(M \) [5]. Also, from [4], \(M \) is \(G \)-extending module if and only if for every closed submodule \(C \) of \(M \), there is a direct summand \(D \) of \(M \) such that \(C \beta D \).

Here, we give analogous characterization of purely \(G \)-extending modules.

Proposition (2.1):
An \(R \)-module \(M \) is purely \(G \)-extending if and only if for every closed submodule \(C \) of \(M \), there is a pure submodule \(P \) of \(M \) such that \(C \beta P \).

Proof: \((\Rightarrow)\) it is clear .

\((\Leftarrow)\) Let \(A \) be a submodule of \(M \). By Zorn's lemma, there exists a closed submodule \(C \) of \(M \) such that \(A \) is essential in \(C \). So, we have \(A \beta C \). By assumption, there exists a pure submodule \(P \) of \(M \) such that \(C \beta P \). Since \(\beta \) is transitive relation, then \(A \beta P \). Therefore, \(M \) is purely \(G \)-extending module. ■

Proposition (2.2):
An \(R \)-module \(M \) is purely \(G \)-extending if and only if every direct summand \(A \) of the injective hull \(E(M) \), there exists a pure submodule \(P \) of \(M \) such that \((A \cap M) \beta P \).

Proof: \((\Rightarrow)\) Let \(A \) be a direct summand of the injective hull \(E(M) \) of \(M \), then \((A \cap M) \) is a submodule of \(M \), since \(M \) is purely \(G \)-extending, then there exists a pure submodule \(P \) of \(M \) such that \((A \cap M) \beta P \).

\((\Leftarrow)\) Let \(A \) be a submodule of \(M \) and let \(B \) be a relative complement of \(A \) such that \(A \oplus B \) is essential in \(M \) [11]. Since \(M \) is essential in \(E(M) \), then \(A \oplus B \) is essential in \(E(M) \). Thus, \(E(A) \oplus E(B) = E(A \oplus B) = E(M) \) [10]. By hypothesis, there exists a pure submodule \(P \) of \(M \) such that \((E(A) \cap M) \beta P \). But \(A \) is essential in \(E(A) \). Therefore, \(A = (A \cap M) \leq (E(A) \cap M) \). But \((A \cap M) = (A \cap M) \cap (E(A) \cap M) \leq (E(A) \cap M) \) and \((A \cap M) = (A \cap M) \cap (E(A) \cap M) \leq (A \cap M) \). So, \(A = (A \cap M) \beta (E(A) \cap M) \). Since \(\beta \) is transitive, then \(A \beta P \). So \(M \) is purely \(G \)-extending module. ■

Proposition (2.3):
The following statements are equivalent for an an \(R \)-module \(M \):
(1) \(M \) is purely \(G \)–extending module.
(2) For each \(Y \) is a submodule of \(M \), there exists \(X \) a submodule of \(M \) and a pure submodule \(P \) of \(M \), such that \(X \leq^e Y \) and \(X \leq^e P \).

Proof: (1)\(\Rightarrow\)(2) Let \(Y \) be a submodule of \(M \). Then there exists a pure submodule \(P \) of \(M \) such that \(Y \beta P \), so \(Y \cap P \leq^e P \) and \(Y \cap P \leq^e Y \). The proof is complete put \(Y \cap P = Y \cap P \).

(2)\(\Rightarrow\)(1) Let \(Y \) be a submodule of \(M \). By (2), there exists a submodule \(X \) of \(M \) and a pure submodule \(P \) of \(M \) such that \(X \leq^e Y \) and \(X \leq^e P \). Now, since \(X \leq Y \cap P \leq Y \) and \(X \leq Y \cap P \leq P \) then \(Y \cap P \leq^e Y \) and \(Y \cap P \leq^e P \). So \(Y \beta P \) and so \(M \) is purely \(G \)–extending module. ■

Following [4], a direct sum of \(G \)-extending modules need not be \(G \)-extending module. Also, a direct sum of purely extending modules need not be purely extending module [5]. Here, we discuss when a direct sum of purely \(G \)-extending modules is a purely \(G \)-extending.
Recall that a submodule N of an R-module M is fully invariant if $f(N) \subseteq N$ for each R-endomorphism f of M [12]. M is called Duo if every submodule of M is fully invariant [13].

Proposition (2.4)

Let M_i be purely G-extending R-module for each $i \in I$ such that every closed submodule of $M=\bigoplus_{i \in I} M_i$ is fully invariant, then $M=\bigoplus_{i \in I} M_i$ is purely G-extending module.

Proof: Let K be a closed submodule of M and let $\pi_i: M \rightarrow M_i$ be the natural projection on M_i for each $i \in I$. Let $x \in K$, so $x = \sum_{i \in I} m_i$, where $m_i \in M_i$ and hence $\pi_i(x) = m_i$. Now, since K is closed submodule of, then by hypothesis, K is fully invariant and hence $\pi_i(K) \subseteq K \cap M_i$. So $\pi_i(x) = m_i \in K \cap M_i$ and hence $x \in \bigoplus_{i \in I} (K \cap M_i)$. Thus $K \subseteq \bigoplus_{i \in I} (K \cap M_i)$. Also, $\bigoplus_{i \in I} (K \cap M_i) \subseteq K$ and $\bigoplus_{i \in I} (K \cap M_i) = K$. Since $(K \cap M_i) \subseteq M_i$ and by purely G-extending property of M_i, then there is a pure submodule P_i of M_i such that $(K \cap M_i)\beta(P_i)$, $\forall i \in I$.

Now, since P_i is a pure submodule of M_i, $\forall i \in I$, then $\bigoplus_{i \in I} P_i$ is a pure submodule in $M = \bigoplus_{i \in I} M_i$ [8]. So, $K = \bigoplus_{i \in I} (K \cap M_i)\beta(\bigoplus_{i \in I} P_i)$ [9]. Thus, M is purely G-extending module.

Corollary (2.5):

Let $M = M_1 \oplus M_2$ be a duo module such that M_1 and M_2 are purely G-extending modules. Then M is a purely G-extending. ■

By the same argument of the proof proposition (2.4), one can get the following result. Firstly, recall that an R-module M is distributive if for all submodules K, L and N of M, $K \cap (L + N) = (K \cap L) + (K \cap N)$[14].

Proposition (2.6)

Let $M = M_1 \oplus M_2$ be a distributive module such that M_1 and M_2 are purely G-extending modules. Then M is a purely G-extending.

Proof: Let A is a submodule of $M = M_1 \oplus M_2$ since M is a distributive module so $A = (A \cap M) = A \cap (M_1 \oplus M_2) = (A \cap M_1) \oplus (A \cap M_2)$. But M_1 and M_2 are purely G-extending, then there are a pure submodule P_1 of M_1 such that $(A \cap M_1)\beta(P_1)$ and pure submodule P_2 of M_2 such that $(A \cap M_2)\beta(P_2)$. So, $A = ((A \cap M_1) \oplus (A \cap M_2))\beta(P_1 \oplus P_2)$ by [9] and by [8] $(P_1 \oplus P_2)$ is a pure submodule of $M = M_1 \oplus M_2$. Thus, M is a purely G-extending. ■

Proposition (2.7):

Let M and N be purely G-extending R-modules such that $ann(M) + ann(N) = R$. Then $M \oplus N$ is a purely G-extending module.

Proof: Let $A(\neq 0)$ be a submodule of $M \oplus N$. Since $ann(M) + ann(N) = R$, then $A = C \oplus D$, where C is a submodule of M and D is a submodule of N[15]. Since $A(\neq 0)$ then $C(\neq 0)$ or $D(\neq 0)$. If $C \neq 0$ and $D = 0$, then $A = C$ is a submodule of M. But M is purely G-extending and hence there is a pure submodule H of M such that $A\beta H$. Since M is a direct summand of $M \oplus N$, then M is a pure submodule of $M \oplus N$, (by [16]), then H pure submodule of $M \oplus N$. Thus $M \oplus N$ is a purely G-extending module. By the similar way if $C = 0$ and $D \neq 0$, then $M \oplus N$ is a purely G-extending module. If $C(\neq 0)$ and $D(\neq 0)$, since M and N are purely G-extending modules, then there is a pure submodule H of M such that $C\beta H$, and there is a pure submodule P of N such that $D\beta P$. But $(H \oplus P)$ is a pure submodule of $M \oplus N$ [8] and by [9], $(C \oplus D)\beta(H \oplus P)$. Therefore, $M \oplus N$ is a purely G-extending module. ■
References
مقاسات التوسع التقنية من النمط -

سعد عبد الكاظم الساعدي
إقبال احمد عمر
قسم الرياضيات / كلية العلوم / الجامعة المستنصرية

استلم البحث في: ٤ آذار ٢٠١٥، قبل البحث في: ١٣ نيسان ٢٠١٥

الخلاصة

في هذا البحث، تم عرض ودراسة صنف من المقاسات التقنية. تم تعميم فعلي لكل من صنف مقاسات التوسع التقنية - من القيم M بأنه توسع إذا كان كل مقاس جزئي من X. ومقاسات التوسع التقنية. تم تعميم مقاسات التوسع التقنية - من القيم M بأنه توسع تقني من النقية من القيم M. ومقاسات التوسع التقنية. وكذلك تم تعميم فعلي لكل من صنف مقاسات التوسع التقنية من النمط - من القيم M. ومقاسات التوسع التقنية. أظهرت هذه الخاصية متحققة لمقاسات التوسع التقنية من النمط - من القيم M. ومقاسات التوسع التقنية.

المفتاحية: مقاسات التوسع، مقاسات التوسع التقنية، مقاسات التوسع من النمط -