Synthesis, Spectral and Bacterial Studies of Mixed Ligand Complexes of Schiff Base Derived from MethylDopa and Anthranilic Acid with Some Metal Ions

Lekaa K. abdul karem
dr. likaakhalid@gmail.com, orcid.org/0000-0002-0735-128X
Taghreed H. Al-Noor
drtaghreed2@gmail.com, orcid.org/0000-0002-6761-7131
Dept. of Chemistry/College of Education for Pure Science (Ibn Al-Haitham) /University of Baghdad

Abstract

Bidentate Schiff base ligand 3-(3,4-Dihydroxy-phenyl)-2-[(4-dimethylamino-benzylidene)-amino]-2-methyl-propionic acid was prepared and characterized by spectroscopic techniques studies and elemental analysis. The Cd(II), Ni(II), Cu(II), Co(II), Cr(III) and Fe(III) of mixed-ligand complexes were structural explicate through molar conductance, [FT-IR, UV-Vis & AAS], chloride contents, , and magnetic susceptibility measurements. Octahedral geometries have been suggested for all complexes. The Schiff base and its complexes were tested against various bacterial species, two of {gram(G+) and gram(G-)} were shown weak to good activity against all bacteria.

Keywords: Bidentate Schiff Base, MethylDopa, Spectroscopic techniques, and bacterial activities.
1. Introduction

Coordination chemistry that related with the chelate or complexes got a large attention [1-2]. Through chemical bonding as the recent studies the formula which involve of central metal (Lewis acid) and ligands (Lewis base) gives us a strong bond and very stable compounds [3]. Schiff bases form stable complexes with some transition metal ions, and they play an important role in general life with industries such as chemistry and biological activities [4 -6]. Methyldopa, (M-dop) = (α-methyl-3,4-dihydroxyphenyl alanine) is one of the catecholic molecules which are liable to interact with Fe (II). It is a catecholamine used (anti-hypertensive drug) [7]. The stability constants (Ks) of (4 metals) with (Nitrilotriacetic &/ or Iminodiacetic) acids as primary ligands and (Methyldopa and/or levodopa) as secondary ligands potentiometrically [8]. The spectrophotometric determination of dopamine. HCl and Methyldopa in pharmaceutical preparations using flow injection analysis (FIA). The method is based on oxidative coupling reaction of drug with 2-Furoic acid hydrazide (C₅H₆N₂O₂) in the presence of Sodium nitroprusside in (NaOH) medium to form soluble product. The results obtained were in good agreement with those obtained by British Pharmacopoeia method [9]. The stability constants of ternary complexes of M(II) ions with two amini acids (aspartic acid(ASP) & Glutamic (Glu) acid) as primary ligands and (levodopa & Methyldopa) as secondary ligands, also all complexes have been carried out (pH-metrically) [10].

2. Experimental

All chemicals used in this research were purchased from BDH, Fluka and Merck companies and used without moreover purification. The melting points were obtained using "Stuart Melting Point Apparatus". The metal contents of the complexes were obtained by atomic absorption technique using a "Shimadzu AA 620G ". The Chloride contents of complexes were obtained by testing all complexes (0.05 gm.) which were decomposed with conc. Nitric acid and diluted with water. The¹H and ¹³C NMR spectra were performed on by "Brucker DRX system 500 (500 MHz)", University of Tehran. Elemental micro analysis CHNS was carried out by the Euro EA 3000, University of Baghdad. UV-Vis spectra were performed on a "Shimadzu UV- 160A". The FTIR- spectra were carried out by a "Shimadzu, FTIR- 8400S" (4000- 400) cm⁻¹ with samples prepared as KBr discs. Magnetic measurements were recorded on a "Bruker BM6 instrument" at 298K following the Faraday's method'.

Ligand's Preparation (HL [11])

A solution of {4-DMBA} 1 mmole in methanol (10 ml) was added to a solution of {M-Dopa} 1 mmole in methanol (20 ml) and then 1mmol of KOH. The mixture was refluxed for 4-hours with stirring. The product was a deep orange solution. It was allowed to cool and dry at room temperature, then recrystallized with ethanol. The brown colored solid mass formed during refluxing was cooled at room temperature, filtered and washed completely with hot ethanol, and recrystallized from acetone to get a pure sample. It yields 90% . The synthetic pathway is as shown in Scheme -1.
Preparation of potassium anthranilate \(\{\text{C}_7\text{H}_6\text{NO}_2\text{K}\} \):

potassium anthranilate ligand has been prepared depending on literature method [11].

A general method in preparation of complexes [11]:

In methanol solution (2mmol of \(\text{C}_7\text{H}_6\text{NO}_2\text{K} \)) and a solution of (HL & KOH) each one is 1mmole were added to a stirred for (1 hour) solution of MCl\(_x\),nH\(_2\)O 1mmole. The mixture was (filtered & precipitation) then washed several times with a surplus of ethanol and dried during (24 hours) at room temperature The synthetic pathway is as shown in Scheme -2.
3. Results and Discussion

1. Physical Properties

- The physical properties for the starting materials and Schiff base (HL) ligand are given in Table (1a and 1b).
- The complexes are soluble in (DMSO) & (DMF), while insoluble in water [12].
- The melting points of ligands were lower than all complexes, Table -1c.
- The conductivity measurement values in DMSO (10^{-3}Molar) solution range in (31.4-38.1) Ω^{-1}cm^2mol^{-1} for Cd(II) ,Ni(II) ,Cu(II) , and Co(II), complexes. the complexes are electrolytes types 1:1 as the data indicate, but the complexes Cr(III)& Fe(III) were non-electrolytes [13].
- Silver nitrate solution was (-) when we examined (Chloride ion)
- The found and theory values of (M%) in each complex are in good agreement [14].

2. 1H-NMR spectrum for the ligand (HL)

The integral intensities (δ) in ppm of each signal in the 1H-NMR spectrum of HL Figure-1, was found to agree with the number of different types of protons present. The signal obtained in range δ (6.44 -7.68) ppm was appointed for doublet due one proton of aromatic ring of phenyl, the formation of Schiff base is supported by the presence of a singlet at (δ 8.46) ppm corresponding to the azomethine proton.

For more information about the Conference please visit the websites:
http://www.ihsciconf.org/conf/
www.ihsciconf.org
(–N=CH). The signal obtained in range δ (7.10-7.70) ppm was appointed for doublet due one proton of aromatic ring. (m, arom. proton,). The signals observed at δ (1.31 & 1.23) ppm ascribed to methyl protons (-CH₃) group⁴[15,16].

3. ¹³C-NMR Spectrum for (HL)

The spectrum of [HL] in (DMSO-d₆ solvent) is shown in Figure-2. Chemical shift [δ ppm] azomethine H-C=N carbon (C1) at 195ppm. The carbon atoms of aromatic ring at range (δ=130.25-139.24) ppm, note methyl carbon (3CH₃) in Schiff base at (δ=41.72,41.51 and 41.09) and at δ=40.68 ppm is ascribed to methyl carbon (1CH₃) of DMSO [15,16].

4. FTIR spectra:

Methyl dopa spectrum: The bands at (1490) cm⁻¹, (3105) cm⁻¹, (2956, 2808) cm⁻¹ and (1257) cm⁻¹ were appointed to υ(C=C) aromatic, υ(C–H) aromatic, υ(C–H) aliphatic stretching vibration and υ(C–C) aliphatic respectively, Table-2a. The band at (1209) cm⁻¹ which account for υ(C-N) cm⁻¹ stretching vibration. The observed bands at [1618 and 1402] cm⁻¹were due to νₘₐₐₘ{COO⁻}carboxyl] and νₙₐₚₚ{COO⁻}carboxyl groups,Δυ{COO⁻}ₘₐₐₘ-ν{COO⁻}ₙₚₚ =216 cm⁻¹. The strong broad bands around (3481 , and 3421) cm⁻¹ were ascribed to the stretching vibration of υ (O-H).The band at (3223) cm⁻¹ was appointed to the stretching vibration of υ (N-H₂) [17,18].

Ligand (HL) spectrum: A very strong broad band around (3473) cm⁻¹ ascribed to stretching vibration of (O-H) group, Table-2a and Figure-3. The spectrum shows a new band at (1620) cm⁻¹ ascribed to υ(C=N) str. vibrations of the (HL) with disappearance of the stretching vibration bands for the amine (NH₂) group [17]. The bands at (1446) cm⁻¹, (3039) cm⁻¹, (2966) cm⁻¹ and (1273) cm⁻¹ were appointed to υ(C=C) aromatic, υ(C–H) aromatic, υ(C–H) aliphatic and υ(C–C) aliphatic str. vibration, respectively. The observed bands at carboxyl groups] in (HL) respectively [19,20]. A sharp band at (1620) cm⁻¹ was due to stretching vibration of the υ(HC=N-), it was shifted to lower frequency for every complex and its range appeared in (1604–1616) cm⁻¹, indicating coordination of the azomethine N atom (HC=N:→M) with the metal ion [21].

Anthranilic acid spectrum : the region of all amino acids (υ NH₃⁺) appears at (3030-3130) cm⁻¹ [22], and, the band of AnthH appears at (3101) cm⁻¹, but this band was disappeared in every complex with appearance of coordinated bands NH₂ within the range (3062-3371)cm⁻¹, Table-2b. the bands at (1662 & 1485) cm⁻¹ respectively due to υ (COO⁻)ₘₐₐₘ and υ (COO⁻)ₙₚₚ, therefore Δυ = 177 cm⁻¹, in complexes were shifted to a lower frequency in range (1554-1593)cm⁻¹ for υ (COO⁻)ₘₐₐₘ and (1327-1400) cm⁻¹ for υ (COO⁻)ₙₚₚ, Table-2c . The Δυ = [υ (COO⁻)ₘₐₐₘ - υ (COO⁻)ₙₚₚ] appeared within the range (189-227) cm⁻¹ indicating that the carboxlate ion coordinates as a mono dentate donor with the metal ions [23]. IR spectra explain that the anthranilato ligand (Anth⁺) is negatively charged can be coordinated to the metal atom [M(II) & M(III)] through the nitrogen atom in amin group (H₂N→M), and oxygen carboxylate group (-COO⁻M), serve as a

For more information about the Conference please visit the websites:

http://www.ihsciconf.org/conf/

www.ihsciconf.org
bidentate. FT-IR spectral results provide strong evidences for the complexation of Schiff base (HL) with metal ions in bidentate mode fashion (NO) occurred through the [O] of carboxylato (-COO-) and (N) of the (HC=–N–)] groups. New weak intensity bands were observed in the regions (532-586) cm\(^{-1}\) might be due to M-N and (412-486) cm\(^{-1}\) due to M-O vibrations, [24,25]. The experimental data suggest that the anthranilic acid acts as bidentate uni negative charge and adopt an octahedral geometry as proposed.

5. Electronic spectra and magnetic moment for the ligands and complexes:

The UV-Vis spectrum of the ligand (HL), Figure-4, Table-3 shows two peaks at \(\lambda_{\text{max}}\) (301 and 344) nm due to \((\pi \rightarrow \pi^*)\) & \((n \rightarrow \pi^*)\) transition respectively[26]. The UV-spectrum of (AnthH) showed two high intensity peaks at (242 and 332) nm appointed to \((\pi \rightarrow \pi^*)\) & \((n \rightarrow \pi^*)\) respectively [22,24].

Cr(III) complex: The (UV-Vis) spectrum, shows high broad peak at 342 nm was indicated to the charge transfer and overlap with \(\nu_3\) \(^{4}A_{2g} \rightarrow ^{4}T_{1g}(P)\), while the weak broad peak at 798 nm , which indicated to \(^{4}A_{2g} \rightarrow ^{4}T_{2g}(F)\) (d–d), transition in an octahedral geometry , and Magnetic moment value is 3.94 B. M. indicating three unpaired electrons close to spin only value, that agreement of the structure of Cr (III) to be an octahedral geometry Table-3, [26].

[Fe (L)(Anth)\(_2\)] complex: The electronic spectrum, shows absorption peak in the UV region at 344nm which is ascribed to (CT) transitions while another absorption peak in the visible region at 790 nm which belongs to electronic transition \(6A_{1g} \rightarrow ^{4}T_{1g}(4P)\), Table-3 [26], and \(\mu_{\text{eff}} = 5.09\) B.M. is lower than the \(\mu_{\text{eff}}\) of the high spin octahedral complex , which is in agreement with an octahedral geometry [27].

[Co(L)(Anth)\(_2\)] complex: The (UV-Vis) spectrum, shows more than one peak. The first high intense peak at 344nm which is ascribed to (C.T) transitions. The second peak is at 430 nm which is ascribed to \(^{4}T_{1g} \rightarrow ^{4}T_{1g}(P)\) \(\nu_3\), and the third absorption peaks are of (d-d) transitions as shown in Table-3, at (734 nm) and 790 nm, which are considered as \(^{4}T_{1g} \rightarrow ^{2}T_{2g}(F)\) \(\nu_1\) transitions[28] , and \(\mu_{\text{eff}} = 4.36\) which suggest an octahedral geometry [24].

[Ni (L)(Anth)\(_2\)] complex: The electronic spectrum shows two peaks at (344nm), which may be appointed to (CT) transitions \& \((\nu_3)\) \(^{3}A_{2g}(F) \rightarrow ^{3}T_{1g}(P)\). The peak at 797 nm, which is due to \(^{3}A_{2g}(F) \rightarrow ^{3}T_{1g}(F)\) \(\nu_2\) \{d-d transitions\}, respectively [28], and The \(\mu_{\text{eff}} = 2.83\) B.M. which suggest an octahedral geometry [24].

[Cu (L)(Anth)\(_2\)] complex: This complex , shows a high intense peak at 344 nm is ascribed to a strong charge transfer and peak at 696nm due to \(^{2}E_g \rightarrow ^{2}T_{2g}\).These peaks are characteristic in position and width with those reported for octahedral Copper (II) complexes, [28], and \(\mu_{\text{eff}} = 1.62\) B.M. which agrees by several research worker's data[24].

[Cd (L)(Anth)\(_2\)] complex: The diamagnetic properties showed as expected from their electronic configuration of Cd(II) \(d^{10}\) complex which did not display any peak in the visible region. The electronic spectrum of cadmium(II) complex shows the absorption peak at 342nm Table-3 which ascribed to the charge transfer, and which agrees with those complexes that have an octahedral structure [23], and the diamagnetic properties did not show any d-d transition,[24].

For more information about the Conference please visit the websites:

http://www.ihsciconf.org/conf/
www.ihsciconf.org
6. Bacterial activities:

Schiff base ligand, Anthranilic acid and the new complexes were tested against various bacterial were given in chart-1. The [Cr(L)(Anth)2] shows negative against E-coli and Bacillus. The [Fe(L)(Anth)2] shows negative result against E-coli and Pseudomonas. Complexes K [Co(L)(Anth2] & K [Ni(L)(Anth2] show good antibacterial activity against the 3-organisms except E-coli. The K[Cu(L)(Anth)2] and K[Cd(L)(Anth)2] show very good antibacterial activity against the four bacteria. Mostly the (ZI)mm of the prepared compounds was in the following order;

Metal complexes > AnthH > HL > DMSO
K [Co(L)(Anth2] >>[Cr(L)(Anth)2] >[Fe(L)(Anth)2]

It is obvious from the top datum that the (ZI) increased significantly on celates special the partial sharing of the (M+2 & M+3) positive charge and electronic spectra of d10 of the metal ion with {N and O} atoms as donor groups or increased because of concept of cell permeability the lipid membrane that surround the cell surplus the vocal of only lipid soluble materials pump to which liposolubility is a significant operator that controls antimicrobial activity [29,30].

Table (1a): The physical properties for The starting materials and ligand HL

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Compound formula</th>
<th>Molecular weight</th>
<th>M.pºC</th>
<th>Colour</th>
<th>Found (Calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C H N O S</td>
</tr>
<tr>
<td>M-dop</td>
<td>C10H13NO4</td>
<td>211.22</td>
<td>290</td>
<td>White</td>
<td>56.86 6.20 6.63 30.30 -------</td>
</tr>
<tr>
<td>4-DMAB</td>
<td>C9H11NO</td>
<td>149.19</td>
<td>72-75</td>
<td>White</td>
<td>72.46 7.43 9.39 10.72 -------</td>
</tr>
<tr>
<td>HL</td>
<td>C19H22N2O4</td>
<td>342.39</td>
<td>160-165</td>
<td>Brown</td>
<td>64.95 (66.65) 6.87 (6.48) 8.66 (8.18) 13.32 -------</td>
</tr>
</tbody>
</table>

Table (1b): The solubility of the HL in various Solvents

<table>
<thead>
<tr>
<th>Compound</th>
<th>H2O</th>
<th>DMF</th>
<th>DMSO</th>
<th>CH3OH</th>
<th>C2H5OH</th>
<th>C3H6O</th>
<th>CC4</th>
<th>CCl4</th>
<th>Petroleume ether</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(+soluble & insoluble (-)}

For more information about the Conference please visit the websites:
http://www.ihsciconf.org/conf/
www.ihsciconf.org
Table (1c): Physical Properties of the Mixed [L- Metal-Anth] Complexes

<table>
<thead>
<tr>
<th>Compound formula</th>
<th>M. wt Calc.</th>
<th>Colour</th>
<th>Yield %</th>
<th>M. p°c</th>
<th>Λ_m Ω⁻¹ cm² mol⁻¹</th>
<th>Metal% theory</th>
<th>(exp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cr(L)(Anth)₂]</td>
<td>C₃₃H₃₃CrN₄O₈</td>
<td>665.48</td>
<td>Brown</td>
<td>80</td>
<td>250 Dec</td>
<td>13.8</td>
<td>7.81 (6.83)</td>
</tr>
<tr>
<td>[Fe(L)(Anth)₂]</td>
<td>C₃₃H₃₃FeN₄O₈</td>
<td>669.48</td>
<td>Brown</td>
<td>89</td>
<td>190</td>
<td>9.5</td>
<td>8.34 (8.70)</td>
</tr>
<tr>
<td>K [Ni(L)(Anth)₂]</td>
<td>C₃₃H₃₃NiN₄O₈</td>
<td>711.43</td>
<td>Brown</td>
<td>72</td>
<td>225</td>
<td>36.2</td>
<td>8.25 (8.79)</td>
</tr>
<tr>
<td>K [Cu(L)(Anth)₂]</td>
<td>C₃₃H₃₃CuN₄O₈</td>
<td>716.28</td>
<td>Brown</td>
<td>78</td>
<td>240 Dec</td>
<td>38.1</td>
<td>8.87 (9.24)</td>
</tr>
<tr>
<td>K [Cd(L)(Anth)₂]</td>
<td>C₃₃H₃₃CdN₄O₈</td>
<td>765.15</td>
<td>Brown</td>
<td>91</td>
<td>260 Dec</td>
<td>37.9</td>
<td>14.69 (13.97)</td>
</tr>
</tbody>
</table>

M. wt = {Molecular Weight}, Λ_m={Molar Conductivity}, Dec ={decomposition }, M. p=melting point

Table (2a): FTIR of the M-dop and HL

compounds	ν (OH) arom	ν (N-H₂)	ν(C≡N-)v (asy sym) v(C=O) v(C≡C) v(C-N) v(-CH₃) v(C-H) arom. alph.				
M-dop	3481 3421 br	3223s	--------	1618 1402	1490 1257	1209 1375	3015 2956,2808
HL	3473	--------	1620	1593 1365	1449 1273	1249 1315	3039 2966

Table (2b): FT-IR of the L-Anthranilic acid

(NH₂) asym,sym Str	ν (N-H₁⁺) Str (carbox.)	C=O Str (carbox.)	ν(-COO⁻) asy.	ν(-COO⁻) sym. $\Delta\nu$ (-COO⁻) asy.- sym	
3321 s	3101s	1716	1662s	1485s	177

For more information about the Conference please visit the websites:
http://www.ihsciconf.org/conf/
www.ihsciconf.org
Table (2c): FT-IR of the complexes

<table>
<thead>
<tr>
<th>Comp.</th>
<th>ν (OH)</th>
<th>ν (NH) asym, sym in Anth</th>
<th>ν (C=H) & CH3</th>
<th>ν(C=N) asym, sym</th>
<th>Δ ν (-COO) asym, sym</th>
<th>ν (M-N) for L3&(Anth)</th>
<th>ν (M-O) for L3&(Anth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cr(L)(Anth)2]</td>
<td>3444</td>
<td>3371 3078</td>
<td>2943 2816</td>
<td>1612</td>
<td>1523</td>
<td>1577 1365s</td>
<td>212</td>
</tr>
<tr>
<td>[Fe(L)(Anth)2]</td>
<td>3479v</td>
<td>3363 3062</td>
<td>2981m 2816</td>
<td>1612</td>
<td>1523</td>
<td>1581 1373</td>
<td>208</td>
</tr>
<tr>
<td>K [Co(Anth)2]</td>
<td>3433</td>
<td>3305 3116</td>
<td>2939 2812</td>
<td>1612</td>
<td>1535</td>
<td>1593 1386</td>
<td>207</td>
</tr>
<tr>
<td>K [Ni(L)(Anth)2]</td>
<td>3429</td>
<td>3305 3217</td>
<td>2943 2804</td>
<td>1604</td>
<td>1543</td>
<td>1593 1381</td>
<td>202</td>
</tr>
<tr>
<td>K[Cu(L)(Anth)2]</td>
<td>3433</td>
<td>3275 3236</td>
<td>2947 2808</td>
<td>1604</td>
<td>1527</td>
<td>1554 1327</td>
<td>227</td>
</tr>
<tr>
<td>K[Cd(L)(Anth)2]</td>
<td>3433</td>
<td>3290 3136</td>
<td>2939 2804</td>
<td>1616</td>
<td>1535 s</td>
<td>1589 1400</td>
<td>189</td>
</tr>
</tbody>
</table>

Table (3): Electronic spectral of the mixed [L- Metal-Anth] Complexes

<table>
<thead>
<tr>
<th>Comp.</th>
<th>λmax nm</th>
<th>ν' cm⁻¹</th>
<th>C max Mol⁻¹.L.cm⁻¹</th>
<th>Assignments</th>
<th>μeff B.M</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cr(L)(Anth)2]</td>
<td>342 798</td>
<td>29239 12531</td>
<td>2444 13</td>
<td>Charge transfer (^4\text{Az}	ext{g} \rightarrow \text{^4}\text{T}_{1g}(\text{P}) \nu_3)</td>
<td>3.94</td>
</tr>
<tr>
<td>[Fe(L)(Anth)2]</td>
<td>344 790</td>
<td>29069 12658</td>
<td>1797 41</td>
<td>Charge transfer (^6\text{Ag} \rightarrow \text{^4}\text{T}_{1g}(\text{4P}) \nu_3)</td>
<td>5.09</td>
</tr>
<tr>
<td>K [Co(Anth)2]</td>
<td>344 430 734 790</td>
<td>29069 23255 13623 12658</td>
<td>1691 70 54</td>
<td>Charge transfer (^4\text{T}{1g} \rightarrow \text{^4}\text{T}{1g}(\text{p}) \nu_3) (^4\text{T}{1g} \rightarrow \text{^4}\text{T}{2g}(\text{F}) \nu_1)</td>
<td>4.36</td>
</tr>
<tr>
<td>K [Ni(L)(Anth)2]</td>
<td>344 797</td>
<td>29069 12547</td>
<td>1700 16</td>
<td>Charge transfer (^3\text{Az}(\text{F}) \rightarrow \text{^3}\text{T}_{1g}(\text{p}) \nu_3)</td>
<td>2.83</td>
</tr>
<tr>
<td>K[Cu(L)(Anth)2]</td>
<td>344 696</td>
<td>29069 14367</td>
<td>1712 55</td>
<td>Charge transfer (^3\text{Eg} \rightarrow \text{^3}\text{T}_{2g})</td>
<td>1.62</td>
</tr>
<tr>
<td>K[Cd(L)(Anth)2]</td>
<td>342</td>
<td>29239 1874</td>
<td>C.T</td>
<td>Diamagnetic</td>
<td></td>
</tr>
</tbody>
</table>
Figure (1): 1H-NMR spectrum of the ligand (HL)

Figure (2): 13C-NMR spectrum of the ligand (HL)

Figure (3): FT-IR of (HL)

For more information about the Conference please visit the websites:
http://www.ihsciconf.org/conf/
www.ihsciconf.org
Figure (4): Electronic spectrum of the (HL)

Figure (5): The (ZI) of mixed [L-Metal -Anth] complexes

References

For more information about the Conference please visit the websites:
http://www.ihsciconf.org/conf/
www.ihsciconf.org
[11] T. H. Al-Noor ; Amer. J. Jarad and A. O. Hussein ; Synthetic, Spectroscopic And Antibacterial Studies Of Fe(II),Co(II),Ni(II),Cu(II),Zn(II),Cd(II)and Hg (II),Mixed Ligand Complexes Of Saccharin And Amoxicillin(antibiotics), Chemistry and Materials Research, 6(3):20-30. 2014
[22] T.H. Al-Noor and L.K. Abdul Kareem; synthetic, spectroscopic and antibacterial studies of Co(II),Ni(II),Cu(II),Zn(II),Cd(II)and Hg (II),mixed ligand complexes of trimethoprim antibiotic and antranilic acid ,TOFIQ Journal of Medical Sciences, 3 (2): 64-75. 2016

For more information about the Conference please visit the websites:
http://www.ihsciconf.org/conf/
www.ihsciconf.org